(3x^2)+4=-5x+5

Simple and best practice solution for (3x^2)+4=-5x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2)+4=-5x+5 equation:


Simplifying
(3x2) + 4 = -5x + 5

Reorder the terms:
4 + (3x2) = -5x + 5

Reorder the terms:
4 + (3x2) = 5 + -5x

Solving
4 + (3x2) = 5 + -5x

Solving for variable 'x'.

Reorder the terms:
4 + -5 + 5x + (3x2) = 5 + -5x + -5 + 5x

Combine like terms: 4 + -5 = -1
-1 + 5x + (3x2) = 5 + -5x + -5 + 5x

Reorder the terms:
-1 + 5x + (3x2) = 5 + -5 + -5x + 5x

Combine like terms: 5 + -5 = 0
-1 + 5x + (3x2) = 0 + -5x + 5x
-1 + 5x + (3x2) = -5x + 5x

Combine like terms: -5x + 5x = 0
-1 + 5x + (3x2) = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-0.3333333333 + 1.666666667x + x2 = 0

Move the constant term to the right:

Add '0.3333333333' to each side of the equation.
-0.3333333333 + 1.666666667x + 0.3333333333 + x2 = 0 + 0.3333333333

Reorder the terms:
-0.3333333333 + 0.3333333333 + 1.666666667x + x2 = 0 + 0.3333333333

Combine like terms: -0.3333333333 + 0.3333333333 = 0.0000000000
0.0000000000 + 1.666666667x + x2 = 0 + 0.3333333333
1.666666667x + x2 = 0 + 0.3333333333

Combine like terms: 0 + 0.3333333333 = 0.3333333333
1.666666667x + x2 = 0.3333333333

The x term is 1.666666667x.  Take half its coefficient (0.8333333335).
Square it (0.6944444447) and add it to both sides.

Add '0.6944444447' to each side of the equation.
1.666666667x + 0.6944444447 + x2 = 0.3333333333 + 0.6944444447

Reorder the terms:
0.6944444447 + 1.666666667x + x2 = 0.3333333333 + 0.6944444447

Combine like terms: 0.3333333333 + 0.6944444447 = 1.027777778
0.6944444447 + 1.666666667x + x2 = 1.027777778

Factor a perfect square on the left side:
((x) + 0.8333333335)((x) + 0.8333333335) = 1.027777778

Calculate the square root of the right side: 1.013793755

Break this problem into two subproblems by setting 
((x) + 0.8333333335) equal to 1.013793755 and -1.013793755.

Subproblem 1

(x) + 0.8333333335 = 1.013793755 Simplifying (x) + 0.8333333335 = 1.013793755 x + 0.8333333335 = 1.013793755 Reorder the terms: 0.8333333335 + x = 1.013793755 Solving 0.8333333335 + x = 1.013793755 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = 1.013793755 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = 1.013793755 + -0.8333333335 x = 1.013793755 + -0.8333333335 Combine like terms: 1.013793755 + -0.8333333335 = 0.1804604215 x = 0.1804604215 Simplifying x = 0.1804604215

Subproblem 2

(x) + 0.8333333335 = -1.013793755 Simplifying (x) + 0.8333333335 = -1.013793755 x + 0.8333333335 = -1.013793755 Reorder the terms: 0.8333333335 + x = -1.013793755 Solving 0.8333333335 + x = -1.013793755 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = -1.013793755 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = -1.013793755 + -0.8333333335 x = -1.013793755 + -0.8333333335 Combine like terms: -1.013793755 + -0.8333333335 = -1.8471270885 x = -1.8471270885 Simplifying x = -1.8471270885

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.1804604215, -1.8471270885}

See similar equations:

| -10=6x+2(-x+13) | | 4m^2+17m+15=0 | | 32y^5+4y^3=0 | | (3x^2-4x)(2x^3+3x-1)=0 | | 2x-2(7x-2)=64 | | -(x-7)=5+2(x-1) | | 18m+5=13m+5 | | 1.08(1.21)(8-x)=10 | | x^2+4-9=0 | | 18c+7=6c-77 | | a+5=-24 | | ln(2x+2)=2.5 | | 7x+4(4x-14)=59 | | 5b=4b-9 | | 110=5x+2(-7+10) | | 12(v+4)-4v=4(2v+4)-22 | | -p/3=4 | | 2sin^2x+sinx+1=0 | | b=4b-9 | | Y=1/2(x-4)^2-2 | | 4sin^2(x)=2cos(x) | | (cos(x)cot(x))/(1-sinx)=3 | | cosxcotx/1-sinx=3 | | 5x+15=-3x-11 | | x=5x^2+x*5 | | N+.6=n+.1+2n | | s^2+3s+8s+24= | | (1/6)^5 | | x^2+3x+24=47 | | 0=5x^2-24x+37 | | 4y+(y-1)=29 | | 4y-y+1=13 |

Equations solver categories